2,273 research outputs found

    Quadtrees, transforms and image coding

    Get PDF
    Transforms and quadtrees are both methods of representing information in an image in terms of the presence of information at differing length scales. This paper presents a mathematical relationship between these two approaches to describing images in the particular case when Walsh transforms are used. Furthermore, both methods have been used for the compression of images for transmission. This paper notes that under certain circumstances, quadtree compression produces identical results to Walsh transform coding, but requires less computational effort to do so. Remarks are also made about the differences between these approaches

    Direct simulation for CAD models undergoing parametric modifications

    Get PDF
    We propose a novel approach—direct simulation—for interactive simulation with accuracy control, for CAD models undergoing parametric modifications which leave Dirichlet boundary conditions unchanged. This is achieved by computing offline a generic solution as a function of the design modification parameters. Using this parametric expression, each time the model parameters are edited, the associated simulation solution for this model instance can be cheaply and quickly computed online by evaluating the derived parametric solution for these parameter values. The proposed approach furthermore works for models undergoing topological changes, and does not need any mesh regeneration or mesh mapping. These results are achieved by use of the proper generalized decomposition model reduction technique, in combination with R-functions. We believe this is the first approach that can interactively simulate the physical properties of a CAD model, even undergoing topological change, without expensive re-computation. The approach is demonstrated for linear elasticity analysis; numerical results demonstrate its simulation accuracy and efficiency in comparison with the classic FE method

    Parametric editing of clothed 3D avatars

    Get PDF
    Easy editing of a clothed 3D human avatar is central to many practical applications. However, it is easy to produce implausible, unnatural looking results, since subtle reshaping or pose alteration of avatars requires global consistency and agreement with human anatomy. Here, we present a parametric editing system for a clothed human body, based on use of a revised SCAPE model. We show that the parameters of the model can be estimated directly from a clothed avatar, and that it can be used as a basis for realistic, real-time editing of the clothed avatar mesh via a novel 3D body-aware warping scheme. The avatar can be easily controlled by a few semantically meaningful parameters, 12 biometric attributes controlling body shape, and 17 bones controlling pose. Our experiments demonstrate that our system can interactively produce visually pleasing results

    An optimization approach for localization refinement of candidate traffic signs

    Get PDF
    We propose a localisation refinement approach for candidate traffic signs. Previous traffic sign localisation approaches which place a bounding rectangle around the sign do not always give a compact bounding box, making the subsequent classification task more difficult. We formulate localisation as a segmentation problem, and incorporate prior knowledge concerning color and shape of traffic signs. To evaluate the effectiveness of our approach, we use it as an intermediate step between a standard traffic sign localizer and a classifier. Our experiments use the well-known GTSDB benchmark as well as our new CTSDB (Chinese Traffic Sign Detection Benchmark). This newly created benchmark is publicly available, and goes beyond previous benchmark datasets: it has over 5,000 highresolution images containing more than 14,000 traffic signs taken in realistic driving conditions. Experimental results show that our localization approach significantly improves bounding boxes when compared to a standard localizer, thereby allowing a standard traffic sign classifier to generate more accurate classification results

    Hubble Space Telescope observations of Mars

    Get PDF
    Hubble Space Telescope (HST) afforded the possibility of resolving features as small as 100 km on the Martian surface even when it is at the far point of its orbit. Therefore it is ideally suited for monitoring seasonal changes on the red planet. The objectives research include: the study of Martian dust storms; use of images obtained through different filters to study the spectral reflectance of regions on the Martian surface; use of ultraviolet images and spectra to measure the amount of ozone in the planet's atmosphere as a function of location of the planet; use of images to study changes in the albedo of the Mars surface; and use of Planetary Camera images to study Martian clouds and to measure the opacity of the atmosphere

    Improving shape from shading with interactive Tabu search

    Get PDF
    Optimisation based shape from shading (SFS) is sensitive to initialization: errors in initialization are a significant cause of poor overall shape reconstruction. In this paper, we present a method to help overcome this problem by means of user interaction. There are two key elements in our method. Firstly, we extend SFS to consider a set of initializations, rather than to use a single one. Secondly, we efficiently explore this initialization space using a heuristic search method, tabu search, guided by user evaluation of the reconstruction quality. Reconstruction results on both synthetic and real images demonstrate the effectiveness of our method in providing more desirable shape reconstructions

    Skeleton-based canonical forms for non-rigid 3D shape retrieval

    Get PDF
    The retrieval of non-rigid 3D shapes is an important task. A common technique is to simplify this problem to a rigid shape retrieval task by producing a bending invariant canonical form for each shape in the dataset to be searched. It is common for these techniques to attempt to ``unbend'' a shape by applying multidimensional scaling to the distances between points on the mesh, but this leads to unwanted local shape distortions. We instead perform the unbending on the skeleton of the mesh, and use this to drive the deformation of the mesh itself. This leads to a computational speed-up and less distortions of the local details of the shape. We compare our method against other canonical forms and our experiments show that our method achieves state-of-the-art retrieval accuracy in a recent canonical forms benchmark, and only a small drop in retrieval accuracy over state-of-the-art in a second recent benchmark, while being significantly faster

    An Efficient Approach to Correspondences between Multiple Non-Rigid Parts

    Get PDF
    Identifying multiple deformable parts on meshes and establishing dense correspondences between them are tasks of fundamental importance to computer graphics, with applications to e.g. geometric edit propagation and texture transfer. Much research has considered establishing correspondences between non-rigid surfaces, but little work can both identify similar multiple deformable parts and handle partial shape correspondences. This paper addresses two related problems, treating them as a whole: (i) identifying similar deformable parts on a mesh, related by a non-rigid transformation to a given query part, and (ii) establishing dense point correspondences automatically between such parts. We show that simple and efficient techniques can be developed if we make the assumption that these parts locally undergo isometric deformation. Our insight is that similar deformable parts are suggested by large clusters of point correspondences that are isometrically consistent. Once such parts are identified, dense point correspondences can be obtained by an iterative propagation process. Our techniques are applicable to models with arbitrary topology. Various examples demonstrate the effectiveness of our techniques

    Color-aware surface registration

    Get PDF
    Shape registration is fundamental to 3D object acquisition; it is used to fuse scans from multiple views. Existing algorithms mainly utilize geometric information to determine alignment, but this typically results in noticeable misalignment of textures (i.e. surface colors) when using RGB-depth cameras. We address this problem using a novel approach to color-aware registration, which takes both color and geometry into consideration simultaneously. Color information is exploited throughout the pipeline to provide more effective sampling, correspondence and alignment, in particular for surfaces with detailed textures. Our method can furthermore tackle both rigid and non-rigid registration problems (arising, for example, due to small changes in the object during scanning, or camera distortions). We demonstrate that our approach produces significantly better results than previous methods

    Vertex location optimisation for improved remeshing

    Get PDF
    Remeshing aims to produce a more regular mesh from a given input mesh, while representing the original geometry as accurately as possible. Many existing remeshing methods focus on where to place new mesh vertices; these samples are placed exactly on the input mesh. However, considering the output mesh as a piecewise linear approximation of some geometry, this simple scheme leads to significant systematic error in non-planar regions. Here, we use parameterised meshes and the recent mathematical development of orthogonal approximation using Sobolev-type inner products to develop a novel sampling scheme which allows vertices to lie in space near the input surface, rather than exactly on it. The algorithm requires little extra computational effort and can be readily incorporated into many remeshing approaches. Experimental results show that on average, approximation error can be reduced by 40% with the same number of vertices
    • …
    corecore